-~ alllaas ol daaly

(o didillg pglal)

e" Loy Addatoh Liwweruty of
Soence ané Tre

e Trchrobogy

Core Labs and
Research Infrastructure

Programming Environment,
Performance & Debugging
tools

Bilel Hadri

bilel.hadri@kaust.edu.sa

Computational Scientist
KAUST Supercomputing Lab
@mnoukhiya @KAUST_HPC

SHAHEEN

SUPERCOMPUTING LABORATORY

alllasc Ellal) asala

aaiiilly aglell

ql
\%”’/, King Abdullah University of
\ Science and Technology

Core Labs and

Research Infrastructure

Shaheen 2 Cray XC40

Edit and Compile only your code on login. To run, submit jobs.
Compiler available Cray CCE (default), Intel and GNU supported

— Compiler wrappers for serial and parallel

* ftn for Fortran code
* ccfor C code
* CCfor C++ code

— Do not purge.

Use of this system is limited to users who have been properly authorised by
the KAUST Supercomputing Laboratory. Unauthorised users must disconnect
immediately.

For support, see http://wew.hpc.kaust.edu.sa/
or email help@hpc.kaust.edu.sa
Last login: Mon Sep 12 18:36:13 2022 from 10.200.0.112

[P I T

e NN T N
NEREN R,
|

SR § BN R PN | WSRO PN R P) VR) VRN AN

A\
||
-1

Shaheen is a 36 rack Cray XC4@ system. The front-end environment is
running SUSE Linux Enterprise Server 15.

t

dcdl2:~> module list

Currently Loaded Modulefiles:

1)
2)
3)
&)
s)
6)
7

modules/3.2.11.4
craype-network-aries
cce/12.0.3
craype/2.7.190
cray-libsci/20.09
udreg/2.3.2-7.0.
7

A
3.1.3.16__0p570dé70.ari
wgni/e.0.14.0-7.0.3.1,

6.4__ 08101058, 011

8)

9)
ie)
11)
12)
13)
14)

pmi/5.0.17
dmapp/7.1.1-7.0.3.1_3.21__g%93a7e%f.ari

gni-headers/5.0.12.0-7.90.3.1_3.9__gded73fe.ari

xpmen/2.2,27<7.0.3.1_3.10__gada73ac.arxi
Job/2.2.4-7.0.3.1_3.17__glebbofae.ari
dvs/2.12_2.2.224~7.0.3.1_3.14__gec77db2af
0lps/6.6.67-7.9.3.1_3.21__9b%1cdl1Bl.arxi

156)
16)
17)
18)
19)
20)
1)

rce/2.2.20-7.0.3.1_3.18__¢g8e3rbsSb.ari
atp/3.14.5

perftools-base/21.09.0
ProEnv-cray/6.9.190

cray-mpich/7.7.18

slurn/slurm
dws/3.9,.36-7.0.3.1_3.19__06985¢c90,ari

22)
23)
24)
25)
26)

eproxy/2.0.264~7.90.3.1_3.9__08e04b33 . 0ri
craype-haswell

xalt/1.1.2

darshan/3.3.1

ksl/ksl

*| Core Labs and

==l Compiler Driver Wrappers

Use them exactly like you would use the original compiler, e.g. To compile.

#to use Cray compilers

ftn -o myexe myprog.f90 # Fortran
cc —-o myexe myprog.c # for C

CC -o myexe myC++code.C # for C++

#to use Intel compilers $to use GNU compilers

module swap PrgEnv-cray PrgEnv-intel module swap PrgEnv-intel PrgEnv-gnu
ftn -o myexe myprog.£f90 # Fortran ftn -o myexe myprog.f90 # Fortran
cc —-o myexe myprog.c # for C cc —-o myexe myprog.c # for C

CC -o myexe myC++code.C # for C++ CC -o myexe myC++code.C # for C++

ftn, cc, and CC, are not Cray compilers; they invoke the Intel, GNU, or Cray compilers under

the hood, depending on the loaded programming environment module (PrgEnv-xxx)

No need to call for mpicc/mpif90... only ftn/cc/CC

*| Core Labs and

03 1 ind .
b Research Infrastructure co m p I I e rs

Intel - better chance of getting processor specific optimizations

Cray compiler — many new features and optimizations, especially with Fortran; useful tools

like reveal work with Cray compiler only

GNU - widely used by open software

More information from compilers options on the man page

PrgEnv Description Real Compilers
PrgEnv-cray | Cray Compilation Environment | crayftn, craycc, crayCC
PrgEnv-intel |Intel Composer Suite ifort, icc, icpc

PrgEnv-gnu

GNU Compiler Collection

gfortran, gcc, g++

a
0% ity ppae | Core Labs and
"= Research Infrastructure o m p I e rs

Use ftn, cc, and CC to compile instead of the underlying native compilers (ifort, icc, icpc, gfortran, gcc, g++..)

Use same wrapper even for MPI codes. Do not use mpicc/mpif90....

Default compiling is dynamic on Shaheen
* just add the -static flag to the command and link lines,
* or set CRAYPE_LINK_TYPE=static in the environment

Compiler wrappers do cross compilation
* Compiling on login nodes to run on compute nodes
* One may run into trouble with GNU automake or cmake.
* Add the specifier —host=x86_64-unknown-linux-gnu for the configure tool .

By default, Cray C/C++ is using CLANG

*| Core Labs and

Research Infrastructure O M P

OpenMP is supported by all of the PrgEnvs.

PrgEnv Enable OpenMP
PrgEnv-cray C/C++: -fopenmp
Fortran: -h omp
PrgEnv-intel -gopenmp
PrgEnv-gnu -fopenmp

*| Core Labs and

Research Infrastructure

Cray Scientific Libraries

* Compiler wrappers takes care of not only the compiler but also libs like BLAS,
LAPACK, SCALAPACK, MPI,..

* Cray Scientific Libraries package, LibSci, is a collection of numerical routines
optimized for best performance on Cray systems.
— LibSci is loaded by default and this is for all programming environment
— No user flags or options are required for compiling or linking.

— LibSci library collection contains; BLAS, BLACS, LAPACK, ScalAPACK, IRT, CRAFFT, CASE,
FFT, FFTW2, FFTW3

* Both cray-python and cray-R call the OpenMP threaded version of cray-libscic calls
the OpenMP threaded version of cray-libsci.

— |t is recommended to set the number of desired threads with the
OMP_NUM_THREADS environment variable.

*| Core Labs and
Research Infrastructure

Cray Scientific Libraries

FFTW: Cray’s main FFT library is FFTW from MIT with some additional optimizations for Cray
hardware

Cray PETSc, Cray Trilinos.
Just need to module load and compile your code

No need to put the whole path of the libraries

Cray-python, cray-R .
* Just load the module and use the tools

*| Core Labs and

e Cray PE DL Plugin

craype-dl-plugin - introduces the Cray PE DL Plugin for accelerating distributed deep learning
DESCRIPTION The Cray PE DL Plugin provides a highly tuned communication layer that can be easily
added to any deep learning framework.

Plugin has both a C and Python 3 APl and supports multiple DL datatypes
Compatible with TensorFlow and PyTorch frameworks

Can be used with popular DL frameworks or integrated into a project via its API

module load craype-dl-plugin

man intro_dl_plugin

*| Core Labs and
Research Infrastructure

Cray Scientific Libraries

* Cray TPSL (Third Party Scientific Libraries) contains a collection of outside mathematical
libraries that can be used with PETSc and Trilinos

— The TPSL increase the flexibility of PETSc and Trilinos by providing users with multiple options for
solving problems in dense and sparse linear algebra

— The cray-tpsl module is automatically loaded when PETSc or Trilinos is loaded. The libraries included
are MUMPs, SuperlLU, SuperLU_dist, ParMetis, Hypre, Sundials, and Scotch.

* Intel MKL: The Intel Math Kernel libraries is an alternative to LibSci
— Features tuned performance for Intel CPUs as well

— Linking is quite complicated but with Intel compilers (PrgEnv-intel) is usually straightforward using
the Intel Link advisor

— http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

ezzmewn Modules available on Shaheen

ot :-:l-u‘i.n':'. eANansh.ariteetonbt)

-y A kel
Aantigaaianid v TR v
ineneat) | T 1.}9':. roerrk B SARATL R S ,.:3&..32'.....
e P e S

Basion l»’—‘-!.lsw

§
iii
i

SRR Mt i AL L E T
R R L] B R i il
o BN hd "
A8 st L R R L)
. e e LR R AL L Ll
BRI 8 ey B T el - AL
R L Ll ") ’
AR AR et R et . " R L L S L UL P)
AR e e
e L L R R RN T LD L L BN SR T ..
LAl RN L S A L L) AR Mt
e WAL et Slernisiere
e L S UL RN

I
!
;

Tenaenil Yo

- he_rh b

e

-

St enitNe

M Pt e
ey

Lavhe e =
Sl h

iy B ot ioed

iy e R

i -

o

l- b

i wulinn

o e

o b

Core Labs and
Research Infrastructure

Shaheen 2 Cray XC40 flyer

* Get started with the flyer

SHAHEEN

Scheduler and Quewes

e T
[O - — B ol ——
Pt b et |] OR ae - -

-t prmrmay v . o
- 0 e
ot - — g ~
— 1 0 m—— - — i e e

- - P mirer e s e

- m—
—— o o o Sty -
—— -~ -~ - e — e —
ang e e BsN Care pms e 4 e e et -
T o —— . — -
e S B e e O b @ ——

L — - -

AOC B et e e SRt Gy e -

L]
e 1 ety

A

TNV g ey ety Y e, P
B
— - . oy

§ e weap Frges crmp Pogiee ete

e e e B (LW e e
Lo Pt b, ——y TV o — v
e e b g e g P e .
3 e e

= |2 e e

L St S ra ™

WIS & e S -
e AP e - ——

b e N

G T G B — T ——
-

oty e e L A e e ..
L R

P s @ o a8 — - —
P Ay - g - - —— -
- ——

.

https

¢

Storage, Quotas, Allocations

o G e e s e o S
St S e ot

b e —— e e eyt
At s 4 JTHA St s S Vo
- ———— S w4ty

B V. p—" o ———

e e T S)
& T R e e peta W R etes
O N B At - e W i oy
- -

e e e
o —

O Ceve mees
-t - - pryeen
L o aen
e vonan
R e
— .
. — .

SHAHEEN

Software & Ubraries

hpc.kaust.link/Shaheen_ flyer

General Tigs

e g T senen of S pecegn W
T B Sk | T S B N ey
e e e

O B o e g, bt
T e el

o eter s wetc
1 e avmil 8 -

D i o o
B e -
P

N B U et v
o m——— i

O o b b
B e —

v o e o e 2V
e a——_—

N e T ———
SN b Ty o o8t e DRA LA e e e’ o
i e
Kl

)« e i o 18 e ot wd Y bk
petrmarn an Gy wdens B peteny ML AACK
FUMAPRCE 40 8 VY Tt 30 B4 et et o
s

Whan aefing et reneted By Cren het e VIR0, wOe,
DN o e o e e 4 o R el
R e

OB V0 g 4 L e N Sty e ety e
o W e w0 T g 0 ——
- e of T .

. e B e et e A e e e s
W e S e VR e S or SOl e e

g Ll ST) e 0 et W L
§ide matrige w (st s L a———" b sw—y
o om o soomee:

AT iy st 11 = he bt A A
AL 5t T P Pogeeet P Sorma Lorme v st ot

TR ww S A o M SoUnet spery

e e Ao et

P L T e el W Ve S
e T N i)

e
PR At 8 e

At v on Tomur tea . Semee e ANWET W

6

@ e “*| Core Labs and o
Ny Research Infrastructure ® u p a es

In order, KSL will be updating the Cray Programming Environment, namely the Cray Developer Toolkit
(CDT), to provide a predictable, stable and consistent programming environment while still making
necessary software updates.

Using more recent packages may result in faster execution of the code.
CDT consists of compilers, MPI, scientific and I/O libraries, profiling and debugging tools, etc.

New CDT software will be installed at least twice a year. The new versions will not be made the defaults
when installed. You need to load them.

Module load cdt/21.09 is the default.
» ¢dt/22.09 is available

I Core Labs and
Research Infrastructure

B il aasls
.. e
.‘-un-—.d
e ety

Performance

s== < Why Performance Analysis ?

You want to get the best expected performance.
— Ex: Internet Bandwidth, RPM vehicles
— Need to identity the issue

Economic: TIME is MONEY
— Lifetime of HPC systems is short (4/5 years)
— Large HPC machines cost in O(S10M)

* Qualitative: Do more science
— Get codes run faster
— Perform more time steps
— Simulation higher resolutions

Must strive to evaluate how your code is running.

e e ° | | i
Learn to think of performance during the entire cycle of . 250« 100 km
@ Karlsruhe Institute of Technology

euzm e Typical Performance Analysis Procedure

"= Research Infrastructure

Measuring the wallclock time is not enough.

Need to know what's really happening under the hood.

Do | have a performance problem at all?
— Time / speedup / scalability

What is the key bottleneck ?
— computation / communication

Where is the key bottleneck?
— Detailed profiling

Why does the code have scalability problems?

— Load imbalance analysis, compare profiles at various sizes function-by -
function, performance modeling

SEE e P@rformance measurement

* No single solution is sufficient
— Timing manually... Not efficient and accurate
— Don’t reinvent the wheel

* Need to use a combination of different methods, tools and techniques is
needed!

— Measurement Sampling and profiling
— Analysis Statistics, visualization, automatic analysis, data mining, ...

-

==l Performance/Monitoring tools

* Many tools are available on HPC systems:
— Gprof
— PAPI lt{doesn;timatterthow,many.
— VIUNE B resourcesjyoulhove i
— Allinea/ARM Tools IS A e
— VAMPIR
— TAU q ?
— Scalasca o L
— Likwid
— VAMPIR j A

— HPCToolkit l \

— Paraver/Extrae
— Darshan

— Perftools (Cray systems) Iffyouldon;tiknowJhowjtoluse
themNitiwill[neveribelenough®

== e Profile a Python code

* Just type:
— python -m cProfile myscript.py

* For call graphs
— pycallgraph graphviz -- ./myscript.py
— Display pycallgraph.png

Core Labs and
Research Infrastructure

ece
[fhe £t View Mewcs Wndow bep

N\ python2 dgemm mpi_py 49, 10 2020-02-11.11-30.map - Arm MAP - Arm Forge 19.1.4

Overview on performance of code over time

Profied pyPon2 7 on 4 processes. 1 node, 64 cores (16 Der process) Sampled bom: Tue Fed 11 2020 113956 (UTC+03) kor 208

Showing data Yom 236 sampiles taken over 4 processes (59 per process)

Appication activity
CPU Noating-pont
2%
Memaory usage
2008
©
1129:56-1139:58 (1.933s): Main thread compute 52.3 %, OpenMP © & %, MPI22.9 %, OpenMP cverhead 15 0 %, Uncategorzed 20 % Zoom A1 = O
" agemm_mpipy O | Time spentor Ire 69 5 x
67 2J] eroandown of e 4.7% time spenton =
68 10 = timel) s e
12.8% T 69 my C += np.dot(tile A, tile B)
70 13 tamel) Execuing mstructons. 00%
7n Caling other tunctions ' 00 . I
12.7% o s 12 reqlo] .Waitall(req) —| EmcangPymoncoss
73 #12 = timel()
74 forint(*Time computing N6.2f N6.2f" & (t1.t8. t2-t1)) _'l ;'
{ Openii® Stacks & x
Tow cose 3me T |wP1 | ovemeas | Funcsonis) on ne | Source | Posson =
= 7 ogemm_mplpy s1/usr/bin/env python
126% F N & my_| 0 = np.random.norsal(size«(my N. my_M)).astypelnp.float32)
178% : - .random.normal(size={my N. M. (np. float32)
127% -t e 127% B reqlo) .waitallireq) dgemm =g py 72
0% a. = rp.dotitile A, tile B) dgemm_mpi py 79
e ok 47% = comm barrier() dgemm_mpi py 90 =

e Forge TR L (o OpenMP View

6

*| Core Labs and
Research Infrastructure

* ARM performance Tools

* Provides quick overview of performance issues:

— The time spent in various categories of instruction: memory access, numeric
operations, floating point operations

— Overview on |/0, Memory, Communication, Threads , Energy usage
— Energy Saves data in HTML, CVS or text form

* To get the report in html or txt
— Load arm-reports module
— make-profiler-libraries
— Relink dynamically your code as shown in the output
— perf-report srun —n 2 ./mycode

B lNas Sl saty
[} d" B
oy S e o
Srwes 000 bartetngy

Core Labs and
Research Infrastructure

srun wave.exe

ARM/DDT general Overview

Compute

4 nodes (32 physical, 64 logical cores per node)

arm
PERFORMANCE

REPORTS 4 processes

nid00024

126 GiB per node

Fri Feb 23 2018 08:29:34 (UTC+03) [
121 seconds (about 2 minutes) MPI
/lustre/project/k01/hadrib/allinea_workshop/

1_reporting/f90

Summary: wave.exe is Compute-bound in this configuration

Compute o3.cx [N

MPI 6.4% ||

I/O 0.0%

Time spent running application code. High values are usually good.
This is very high; check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad.
This is very low; this code may benefit from a higher process count

Time spent in filesystem 1/O. High values are usually bad.
This is negligible; there's no need to investigate |/O performance

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU

section below.

As very little time is spent in MP| calls, this code may also benefit from running at larger scales.

3 adlage Jhiad sasts

Core Labs and
Research Infrastructure

CPU

A breakdown of the 93.6% CPU time:

Scalar numericops 28.6% W

Vector numeric ops 0.0%

Memory accesses 71.4% R

The per-core performance Is memory-bound. Use a profiler to

identify time-consuming loops and check their cache
performance.

No time is spent in vectorized instructions, Check the compiler's
vectorization advice to see why key loops could not be vectorized.

/0

A breakdown of the 0.0% 1/0 time:
Time in reads 0.0%
Time in writes 0.0%

Effective process read rate 0.00 bytes/s
Effective process write rate 0,00 bytes/s

No time is spent in |/O operations. There's nothing to optimize
here!

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 31.0 M8 N

Peak process memory usage 31.2 Mis 1N

Peak node memory usage 1.0% |

The peak node memory usage is very low. Running with fewer MP|
processes and more data on each process may be more efficient.

ARM/DDT Detailed

MPI

A breakdown of the 6.4% MPI time:

Time in collective calls 0.5%

Time in point-to-point calls 992 N
Effective process collective rate 470x8/s N
Effective process point-to-point rate 2.34 M3/s N

Most of the time is spent in point-to-point calls with a very low
transfer rate. This suggests load imbalance is causing
synchronization overhead. use an MP! profiler to investigate.

Threads

A breakdown of how multiple threads were used:
Computation 0.0%

Synchronization 0.0% |
Physical core utilization 3 1%

System load 1%

No measurable time is spent in multithreaded code.

Physical core utilization is low. Try increasing the number of
processes to improve performance.

Energy

A breakdown of how the 17.0 Wh was used:
cPu 69.6% N

System 04 W

Mean node power 125w N

Peak node power 151 W N

Significant time is spent waiting for memory accesses. Reducing
the CPU clock frequency could reduce overall energy usage.

adlage Jhiad sasts

-
(u' hhaty pgal

oy b ey
P .

Core Labs and
Research Infrastructure

* Use profiling and charactirization tools
Allinea report,

Craypat profiling
Darshan
Contact CS team at KSL

=,

T DaNTO_ares 5

N T CONMQUIAon

Howis mylO?

—tow (1333

.
-t
|
-
et}
-
[p—
-

- - ———

—m— -

- -
- po—
| ;—- l
- =
RN A
Beimyerman ey
. . . - - » M~ ~
- - ——— - - - -
- P

Table 1:
Time® | Time | Imb. | Imb. | Calls |Punctionnction

| | Time | Timed | | Sourceurce

| | | | Linene
100.0% | 13,461.5%4081 | o= | “= | 666,344.0 |Total
l ___
| 32.1% | 4,326.121649 | -= | -= | 3,072.0 |mpi_barrier_(sync)
| 24.4% | 3,284.591116 | -~ == | 48,630.0 |MPI_FILE WRITE_ALL
| 14.0% | 1,884.152065 | el | == | 71,930.0 |hSdwrite c_
3 | | | | | line. 334
| 12.7% | 1,704.005636 | = | = | 88,516.0 |ncd_put_vara_tc
3 | | | | | line.1431
| 9.9% | 1,338.717666 | = | “= | 49,539.0 |write_var
3 | | | | | line.2262
| 3.0% | 397.666538 | -~ | - | 120.0 |mpi_init_(sync)
|

Additional details

I Core Labs and
Research Infrastructure

B il aasls
.. e
.‘-un-—.d
e ety

Debugging

®
Valgrind4hpc
Research Infrastructure

. VaI%(indAhpc debugging tool helps in the detection of memory leaks and errors in parallel
applications.

* Compile and link with -g option, then allocate and follow the steps shown bellow.

salloc -N 1 module

unload darshan xalt

module load valgrind4hpc

export CTI_WLM IMPL=slurm export CTI_LAUNCHER NAME=srun

valgrind4hpc -n2 --launcher-args="--hint=nomultithread --ntasks=2" --valgrind-args="--track-
origins=yes --leak-check=full" ./my exe

* Hereis a clean output. Otherwise, follow the instructions to detect the memory leaks:
RANKS: <0,1>
HEAP SUMMARY: in use at exit: 0 bytes in 0 blocks

All heap blocks were freed -- no leaks are possible ERROR SUMMARY: 0 errors from 0 contexts
(suppressed 19)

* To run your program and debug it across multiple nodes, allocate the desired number of nodes
and then ugdate accordingly the parameters in the launcher-args similar to the option for the
srun/sbatch script.

* More information is available in the man pages of valgrind and valgrind4hpc.

. “*| Core Labs and

- =i Different tools available

* Several tools for C/C++/Fortran debugging tools:
* gdb4hpc
* valgrind4hpc
* sanitizedhpc

0% ity ppae | Core Labs and
"= Research Infrastructure g p c

* gdb4hpc (Cray Line Mode Parallel Debugger) is a GDB-based parallel debugger, developed by Cray.
* |t can debug with CCE, PGI, GNU and Intel Fortran, C and C++ compilers.

* gdbdhpc also includes comparative debugger technology that enables programmers to compare data
structures between two executing applications. Cray, however, recommends accessing the comparative
debugger technology through the new Cray Comparative Debugger (CCDB) with graphical user
interface (GUI) that enhances the parallel debugging capabilities of gdb4hpc.

L

More info in man pages

module load gdb4hpc

Note: need to unload xalt

ezzmem, . Debugging with ARM/DDT

> ftn -g -00 -gopenmp -o exe mpi_debug test_hib.£90
> salloc -N 1
> module load arm-forge/19.1.4

> ddt exe_mpi_debug

medule load are-forge/19.

EREESTT grm
FORGE
arm
DDT
arm
MAP
Swppent
Tukdes

e==lmrm.... Debugging with ARM/DDT

Use the GUI to navigate within the code and check the variable

call MPI_COMM_RANK(1comm,iproc,ierr)
1somp parallel private(tid)

tid = omp_get_thread_nus()

nthreads = omp_get_num_threads()

do 1 =0, nproc-1
! call MPI_BARRIER(1comm,ierr)

do) = 0, nthreads-1
! Isomp barrier
if (1proc == 1 .and. tid ==))
write (6,%) *"MPI rank:*, 1proc
and s §

* Allocate the node

>module load totalview

>tv8 &

o0 ' '\ TotaiView for HPC

Start a Debugging Session

What would you like to debug?

I

L

PARALLEL
DITAR s

Dt BUG
OFTIONS

‘ ENVIROMME NT

. PREVIEW
O Laumon

When you are ready,
press Neato

Debugging with Totalview

* Compile with —g option as usual

N\ TotaView for HPC. Paratiel Program Sesscn
£ Parallel Program Session

Sestcn Name et

Name | SLLEM

L

Paralel Semngs

Tosks (o) |4

Nodes (4 |1

Argamaets

e | poovioss | e | | St Session|

Cancet |

Totalview

Research Infrastructure

Core Labs and

_3“1.

B Chiad saela
Aoidy potats

iy M ey o
o g

I Core Labs and
Research Infrastructure

B il aasls
.. e
.‘-un-—.d
e ety

Transferring Files

s pmmne Transfer files: Use Globus

scp/ftp for small size (in order of KB)

For I;arger file, use Globus, especially for moving data in & out of Shaheen http://www.globus.org/ (
Free

— Reliable & easy-to-use web-based service:
— Email notification of success or failure

Globus extensive documentation https://docs.globus.org
* Web based interaction with service
» REST/API for scripted interactions with service

* Globus Connect Server & Personal for setting up additional remote endpoints such your
personal laptop/ workstation

Globus on Shaheen. Look for Shaheen End point Point
— Within Campus: choose dm2.hpc.kaust.edu.sa
— Qutside Campus: choose dm1l.hpc.kaust.edu.sa

*| Core Labs and
Research Infrastructure o u S

* Connect to globus.org
* Sign in or create an account

* Use Shaheen dm2 when inside KAUST and dm1 when connected
externally.

Transfer Files SECENT ATV
Endponrn Ervipewd
Py Co P o

Trwrater Settrgn e ey beehe e e g -
S Vo ——r——. o o—

B e e)

adlage Ciiad sasts

Povre~peryet Core Labs and

==l Transferring with Globus

Transfer Files Activity Endpoints Bookmarks Console

Transfer Files recentactiy O 1 /o0 (Do
Endpoint Shaheen cdi2 n Endpoint bilelhadri
Path /~/ Go Path /~/Documents/Shaheenll_acceptance/pon Go
soloct i L. uwponefolder C rofresh st sharo - soloct none L. uponefoider C refrosh list share =
i 151220-1000-1800 ' M 150514_1225-1325 Folder
B 2015-05-14T00:04:35+0300 B Power-hpl Folder

B 2015-05-15720:56:10+0300 B Powerhpl.zip 1.50 GB

. na .

Sz e File Status notification (email and web-interface)

S 020 ety Research Infrastructure

Activity
‘= Task List

V NERSC Cori to Shaheen cdl2
transfer completed a month ago

) Ovenview = EventLog

Task ID ec24a144-2a81-11e8-b7fa-0ac68731c732 Files 1
Owner Bilel Hadri (hadri@globusid.org) Directories 0
Destination Shaheen cdi2) Pending 0
owner shaheen@globusd org Succeeded 2
Condition SUCCEEDED Cancelled 0
Requested 2018-03-18 10:56 am Expired 0
Completed 2018-03-18 10:57 Folnd ©

of am Retryi
Transfer Setti verify file integrity after transfer o
-

o Skipped 0

* transfer is not encrypted
« overwriting all files on destination e

Qo 572 Core o and
et e by re

Tips & Summary

==l Best Practices for Performance (1)

Check the system details thoroughly

— Never assume ! (Login nodes different than compute) T
-
* Choose a compiler and MPI to build your application M
— All are not same ! Rely on the latest versions

Start with some basic compiler flags and try additional flags one at a time
— Optimization is incremental ! Benchmarking and testing is a must

Use the built-in/optimized libraries and tools to save time and improve performance
— Libraries Tools are your friends !
— By doing the different steps of optimizations:

— You can achieve huge speedup (0o(10x) and more) by using Optimized Mathematics
libraries (Cray, MKL)

— Optimizing the cache and memory

*| Core Labs and

= Best Practices for Performance (2)

Don’t Reinvent the wheel ! Several tools are available for debugging and
performance

Test your application at every level to arrive at an optimized code
— Check correctness !

Customize your runtime environment to achieve desired goals
— Play with the number of threads, memory and core affinity

Profile and adjust optimization and runtime environments accordingly
— Start with small and short runs

READ the manual and/or attend the tutorials/workshops !

Visit https://www.hpc.kaust.edu.sa/training

6: ‘

*| Core Labs and

e Bast Practices

* Use adequately your allocation
— Check your core hours, sb kxxxx ,sb_user kxxxx
— Check your quota usage kuq, kpq
— Prepare in advance the project proposal

* Shaheen is a shared resource
— Be kind to your neighbor users
— Don’t run on login.

* Follow the terms and conditions
— Don’t share your account with others.

P -u iy e | Core Labs and
Q7 SIEUEDT | Research Infrastructure KSL ‘ S I ea m

* Need help: send a ticket help@hpc.kaust.edu.sa
— Help us to help you :D
* Provide details.
* Which HPC system?

* What is the problem? When did it happen? What modules were loaded? How did you try to
fix or work around it? Send the error and job script.

* Acknowledge KAUST Supercomputing Lab and HPC resources used in your papers.

L

bilel.hadri@kaust.edu.sa
@mnoukhiya @KAUST_HPC

