

HPC Visualization and In Situ Visualization at KAUST

KAUST Visualization Core Lab

James Kress james.kress@kaust.edu.sa

KVL website: wiki.vis.kaust.edu.sa
General Inquiries: help@vis.kaust.edu.sa

Visualization Core Lab

Overview of People & Services

The Team

Dr. Sohaib Ghani (LEAD STAFF SCIENTIST)

- VISUAL ANALYTICS
- INFORMATION VIS
- STATISTICAL ANALYSIS

Dr. Ronell Sicat VR/AR

- SCIENTIFIC VISUALIZATION
- VR DEVELOPMENT
- 3D RECONSTRUCTION

Dr. James Kress HPC SCIVIS

- VISUALIZATION SOFTWARE
- HPC INSITU VISUALIZATION
- DISTRIBUTED VISUALIZATION

The Team

Thomas Theussl scivis

- SCIENTIFIC VISUALIZATION
- LARGE DATA ANALYSIS
- DISTRIBUTED VISUALIZATION

Dr. Didier Barradas

Data Scientist

- DATA SCIENCE
- MACHINE LEARNING
- DEEP LEARNING

Project Requests

- Standard Request
 - Load data 'X' in program 'P' to produce a visualization 'V'
- Advanced Support
 - "Investigative" Visualization
- Collaboration
 - Work with you through your research and discovery cycle
- Have an interest in HPC vis or in situ? Let me know!

Upcoming Workshops at KVL

Scientific Visualization Workshop Series

Fall 2022

Training Events	Date	Venue	Registration
Introduction to Scientific Visualization with VisIt	9 Oct 2022, 1- 5pm	Building 4 Level 5 Room 5220	
Introduction to Scientific Visualization with Avizo	24 Oct 2022 1-5 pm	TBA	TBA
Topological Analysis with ParaView and the Topology Toolkit (TTK)	30 Oct 2022, 1- 5pm	Building 4 Level 5 Room 5220	TBA
Image Segmentation and 3D Reconstruction using Ilastik and Avizo	9 Nov 2022, 1-5 pm	Conference Room Between Bldgs. 2 and 3 (Auditorium 0215)	TBA

Data Science Workshops

Fall 2022

Introduction to Data Science Workshop Series

Training Events	Date	Venue	Registration
	2022-09-12, 2-4 pm AST	Level 0 Auditorium Between B4 and B5	Register Here
	2022-09-21, 2-4 pm AST	Level 0 Auditorium Between B4 and B5	Register Here
	2022-10-10, 2-4 pm AST	Level 0 Auditorium Between B4 and B5	

ParaView & Vislt

On Ibex and Shaheen

What are ParaView and VisIt?

- Open-source turnkey application for data analysis and visualization of mesh-based data
- Infrastructure for parallel postprocessing that scales from laptops to HPC clusters
- Built-in in situ capabilities

How Do I Obtain ParaView or VisIt?

- Use an existing build:
 - For your Laptop or Workstation:
 - Binaries for Windows, OSX, and Linux (RHEL + Ubuntu)
 - https://visit-dav.github.io/visit-website/releases-as-tables/#latest
 - https://www.paraview.org/download/
 - KVL team manages builds on Ibex and Shaheen
 - IT Remote Workstations
- Build it yourself:
 - "build_visit" is a script that automates the process of building Visit and its third-party dependencies. (docs: https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/building-visit/index.html)
 - https://gitlab.kitware.com/paraview/paraview-superbuild

Best Practices

How do I use ParaView or VisIt?

- If your data is small/manageable
 - Do your visualizations on your laptop, desktop, or IT Remote Workstation
- If your data is medium/large
 - Do interactive visualization on Ibex
 - Run it on your local machine and connect directly to Ibex to load/process/visualize
 - https://gitlab.kaust.edu.sa/kvl/KAUST Visualization Vignettes/-/tree/master/ParaView Vignettes#using-paraview-interactively-on-ibex
 - https://gitlab.kaust.edu.sa/kvl/KAUST_Visualization_Vignettes/-/tree/master/VisIt_Vignettes#using-visit-interactively-on-ibex
- If your data is large/huge and you have a defined workflow
 - Do batch visualization on Shaheen
 - https://gitlab.kaust.edu.sa/kvl/KAUST Visualization Vignettes/-/tree/master/VisIt Vignettes#expy
 - https://gitlab.kaust.edu.sa/kvl/KAUST Visualization Vignettes/-/tree/master/ParaView Vignettes#expy
- If you have repeatable repetitive tasks
 - Do scripted or batch visualization

Scripting Examples

- KVL has a repo of simple examples of ParaView and VisIt scripting and the associated batch scripts to run on both Ibex and Shaheen
- Run scripts locally
 - pvpython –force-offscreen-rendering ./stats.py
 - visit –nowin –cli –s stats.py

```
# Open file and add basic plot

OpenDatabase("localhost:../data/noise.silo", 0)

AddPlot("Pseudocolor", "hardyglobal", 1, 0)

DrawPlots()

# Query stats about data

SetQueryFloatFormat("%g")

print("\n")

print("3D surface area: ", Query("3D surface area"))

print("Average Value : ", Query("Average Value"))

print("Centroid: ", Query("Centroid"))

print("GridInformation: ", Query("Grid Information"))

print("MinMax: ", Query("MinMax", use actual data=1))
```

```
3D surface area: The total Surface Area is 2400 parsec^2
Average Value : The average value of hardyglobal is 3.27436 Joules
Centroid: Centroid = (0.205405, 0.162072, -0.0195174)
GridInformation: Grid 0: type=AVT_RECTILINEAR_MESH, dims={50,50,50}

MinMax:
hardyglobal -- Min = 1.09554 (node 105026 at coord <0.612245, -10, 7.14286>)
hardyglobal -- Max = 5.88965 (node 83943 at coord <7.55102, 1.42857, 3.46939>)
```


In Situ Visualization

On Ibex and Shaheen

What is In Situ Visualization?

Produce visualization & analysis during the course of an active simulation

Multiple ways that this can be accomplished

Why Use In Situ Visualization?

- Faster simulations/More simulations
- Increase simulation resolution (time, spatial)
- Keep what you need
- Reduced I/O helps other users too
- Reduced storage keeps performance optimal

Inshimtu

KVL has developed Inshimtu

- An in situ 'shim'
- Designed for existing, unmodified simulations
- Works with files written by simulation
- Uses Catalyst and ParaView vis-pipelines
- Low barrier to entry
 - Try-out in situ without commitment of creating a true in situ integration

Cyclone Chapala 2015

Bespoke In Situ

- If you are looking for a true in situ integration there are multiple options available
 - ADIOS2
 - A full data management solution.
 - Can aid in better I/O performance, in situ, data reduction
 - https://adios2.readthedocs.io/en/latest/
 - ParaView Catalyst / VisIt Libsim
 - Directly integrate ParaView of VisIt functionality into your simulation code
 - https://catalyst-in-situ.readthedocs.io/en/latest/index.html
 - https://www.visitusers.org/index.php?title=VisIt-tutorial-in-situ
 - Ascent
 - Ascent is a many-core capable flyweight in situ visualization and analysis infrastructure
 - https://ascent.readthedocs.io/en/latest/
 - VTK-m
 - VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures (many-core extension of VTK)
 - It is used by Ascent, but can be used with other libraries to enable in transit visualization
 - https://m.vtk.org/

Thanks!

We can help! Contact us with HPC visualization / in situ questions

Contacts james.kress@kaust.edu.sa help@vis.kaust.edu.sa